Download Integrales de chemin en mechanique quantique: introduction by Zinn-Justin J. PDF

By Zinn-Justin J.

Show description

Read Online or Download Integrales de chemin en mechanique quantique: introduction PDF

Similar quantum physics books

Quantenmechanik.. eine Einfuehrung (QM 1)(7ed., Springer, 2008)(de)(ISBN 97835407367457)

Schwabl F. Quantenmechanik. . eine Einfuehrung (QM 1)(7ed. , Springer, 2008)(de)(ISBN 97835407367457)

Quantum Information With Continuous Variables of Atoms and Light

This ebook offers the cutting-edge of quantum info with non-stop quantum variables. the person chapters talk about effects completed in QUICOV and provided on the first 5 CVQIP meetings from 2002 2006. Many world-leading scientists engaged on non-stop variables outdoors Europe additionally give a contribution to the booklet.

Extra resources for Integrales de chemin en mechanique quantique: introduction

Sample text

1989). Prog. Theor. Phys. Suppl. 99, 149. Allan, D. W. (1966). Proc. IEEE 54, 221. , and Thirring, W. (1987). Commun. Math. Phys. 112, 691. , and Horn, P. M. (1981). Rev. Mod. Phys. 53, 497. Esaki, L. (1985). In The Technology and Physics of Molecular Beam Epitaxy, E. H. C. Parker, ed. New York Plenum. , et al. (1987). Phys. Rev. Lett. 59, 2503. , et al. (1990). Phys. Rev. Lett. 64, 1581. Jauslin, H. R. (1991). Physica D51, 200. , et al. (1992). Phys. Rev. Lett. 68, 2269. Mandelbrot, B. B. (1968).

Et al. (1989). Prog. Theor. Phys. Suppl. 99, 149. Allan, D. W. (1966). Proc. IEEE 54, 221. , and Thirring, W. (1987). Commun. Math. Phys. 112, 691. , and Horn, P. M. (1981). Rev. Mod. Phys. 53, 497. Esaki, L. (1985). In The Technology and Physics of Molecular Beam Epitaxy, E. H. C. Parker, ed. New York Plenum. , et al. (1987). Phys. Rev. Lett. 59, 2503. , et al. (1990). Phys. Rev. Lett. 64, 1581. Jauslin, H. R. (1991). Physica D51, 200. , et al. (1992). Phys. Rev. Lett. 68, 2269. Mandelbrot, B.

We shall call this marginal chaos pseudo-chaos . 001 (see Fig. 2(c)), which is reminiscent of Brownian motions. , in the intermittent chaos and general Hamiltonian systems, and is called simply as 1/f fluctuation. , 1987, 1990), little attention has been given to 1 /f fluctuation in quantum systems. The results in Fig. 2 are mysterious, if one recalls the lack of extrinsic randomness introduced into the system and the linearity of the Schrödinger equation. (In a mean-field approximation, to be mentioned in the next section, a nonlinear Hartree-like equation can be available, showing chaotic phenomena.

Download PDF sample

Rated 4.83 of 5 – based on 30 votes