Download Coupling of Electronic and Nuclear Motions in Diatomic by Condon E. U. PDF

By Condon E. U.

Show description

Read Online or Download Coupling of Electronic and Nuclear Motions in Diatomic Molecules PDF

Similar electronics books

Digital Electronics. Principles, Devices and Applications [messy]

The basics and implementation of electronic electronics are necessary to knowing the layout and dealing of consumer/industrial electronics, communications, embedded structures, desktops, safety and armed forces gear. units utilized in functions equivalent to those are regularly lowering in dimension and utilising extra advanced know-how.

Additional resources for Coupling of Electronic and Nuclear Motions in Diatomic Molecules

Example text

181 17. N. Maeda, T. Makimura, T. X. Wang, M. Hiroki, H. Yokoyama, T. Makimoto, T. Kobayashi, and T. Enoki: Jpn J. Appl. Phys. Part 2: Lett. Express Lett. 44 (2005) L646 18. S. L. Wang, and M. Ichikawa: Jpn J. Appl. Phys. Part 2: Lett. 41 (2002) L820 19. M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa: Electron Devices Meeting, 2004 – IEDM Technical Digest, IEEE International, San Francisco, California, 2004, p. 803 20. T. Makimoto, Y.

Kumakura, Y. Yamauchi, and T. Makimoto: Phys. 1 IV–IV Group Semiconductors SiC (S. Yoshida) Crystal Structure Silicon carbide is a binary AN B8−N compound with eight valence electrons per atom and as shown in Fig. 1a, the four nearest neighbor atoms form a regular tetrahedral crystal structure. Since Si and C are both group IV atoms, they are covalently bonded. However, according to Pauling [1], the differences in the electronegativity of Si and C results in the compound having ionicity of 12%. 12 eV).

1. 9 400 603 easy easy yes yes 1 Development and Applications of Wide Bandgap Semiconductors 13 Fig. 6. Comparison of performance of Si and SiC devices in the case of Schottky diodes 1014 –1019 cm−3 both for p- and n-types by impurity doping. Further, the surface of SiC can be covered with high-quality oxide layers by thermal oxidation, an essential factor for device fabrication. 6 shows a comparison of the characteristics of Si and SiC Schottky diodes, majority-carrier power devices. The upper figure is a comparison of the device length, which shows that the one order of magnitude larger breakdown field strength of SiC enables a reduction of its device length to 1/10 of that required for Si.

Download PDF sample

Rated 4.71 of 5 – based on 31 votes